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Numerical verification of Percival’s conjecture in a quantum billiard
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In order to verify Percival’s conjecture@J. Phys. B6, L229 ~1973!# we study a planar billiard in its classical
and quantum versions. We provide an evaluation of the nearest-neighbor level-spacing distribution for the
Cassini oval billiard, taking into account relations with classical results. The statistical behavior of integrable
and ergodic systems has been extensively confirmed numerically, but that is not the case for the transition
between these two extremes. Our system’s classical dynamics undergoes a transition from integrability to
chaos by varying a shape parameter. This feature allows us to investigate the spectral fluctuations, comparing
numerical results with semiclassical predictions founded on Percival’s conjecture. We obtain goodglobal
agreement with those predictions, in clear contrast with similar comparisons for other systems found in the
literature. The structure of some eigenfunctions, displayed in the quantum Poincare´ section, provides a clear
explanation of the conjecture.@S1063-651X~98!13105-7#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

In 1973 Percival conjectured that in the semiclassi
limit, the spectrum of a generic dynamical system consist
two parts with strongly contrasting properties: a regular a
an irregular part@1#. At the classical level such a syste
exhibits a mixed dynamics: Regular regions dominated
tori and chaotic regions with mixing behavior coexist in t
phase space.

In order to characterize a semiclassical spectrum it is
vantageous to consider a sensitive fluctuation measure.
probability distributionp(s) of the spacings between suc-
cessive levels is of particular interest because it contains
formation of the spectrum on its finest scale. In the spe
case of multidimensional integrable systems, Berry and
bor @2# showed that the levels are uncorrelated andp(s) is
governed by a Poisson distribution. The other special c
corresponds to mixing systems where almost all orbits
plore densely and chaotically the energy surface. In this c
Bohigaset al. @3# conjectured that the fluctuation properti
of these spectra can be modeled by the ensemble of ran
real symmetric matrices@the Gaussian orthogonal ensemb
~GOE!# @4#. For such systems, where the energy levels d
play repulsion,p(s) is closely approximated by the Wigne
distribution; however, we have used the exact distribution@5#
because the differences are meaningful, as we shall see
low.

In the generic case, Berry and Robnik@6#, based on Per-
cival’s conjecture, considered independent sequences of
els associated with each connected regular or irregular c
sical phase-space region. When only one chaotic reg
predominates~the situation considered in this article!, they
provided an expression for the distributionp(s) in terms of
the classical fractionrcl of regular regions@referred to as the
Berry-Robnik distribution~BRD!#.

Although the special cases have been extensively c
571063-651X/98/57~5!/5397~7!/$15.00
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firmed numerically@7–9,3,10,11#, with some well under-
stood exceptions@12–14#, for generic systems numerical ca
culations give rise to contradictory conclusions. Recen
there has been a number of numerical works@15–17# show-
ing that the Brody distribution~BD! @18# gives quite a satis-
factory fit globally. The Brody distribution is a one
parameter family of distributions that interpolates betwe
Poisson and Wigner in a simple way; however, it has
semiclassical meaning. On the other hand, in 1994 Pro
and Robnik@19# confirmed numerically semiclassical predi
tions ~the BRD! working on an abstract dynamical system
the standard map on a torus. To agree with this theory, t
needed to compute extremely high excited states~around the
303106!. However, at not so excited states they found go
global agreement with the Brody distribution both for th
standard map and for the Limacon-Robnik billiard. In 19
Prosen arrived at the same conclusion working on a tw
dimensional semiseparable oscillator@20#.

The Brody-like behavior at small spacing is understood
terms of tunneling between classically separated region
phase space; however, the global agreement with the Br
distribution has no theoretical foundations. On the oth
hand, the very slow transition to semiclassical predictio
can be explained by the presence of partial barriers in
chaotic regions because the corresponding statistics is n
GOE for finite\ @10,13#.

The goal of the present article is to verify that the clas
cal support of eigenfunctions can be clearly identified
regular or chaotic and this classification is only affected
tunneling between classically separated regions of ph
space~this effect decays exponentially when\ decreases, as
it was pointed out in Ref.@6#!. We compute the spectra
fluctuations of a one-parameter family of planar billiards: t
Cassini ovals@21#. The classical dynamics in this billiard i
mixed, going from integrability to chaos by varying a sing
parameter. We have chosen this parameter such that the
5397 © 1998 The American Physical Society
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5398 57CARLO, VERGINI, AND FENDRIK
sical dynamics does not show partial barriers immersed
the chaotic sea to study Percival’s conjecture through
accuracy of the BRD. Moreover, we study qualitatively t
eigenfunctions in phase space to provide additional sup
to the results.

Our work is organized in the following way. In Sec. II w
introduce the classical system. Section III is devoted to
description of the quantum system~its energy spectrum an
the corresponding eigenfunctions!. In Sec. IV we study the
resulting energy level statistic. Finally, Sec. V is devoted
conclusions.

II. THE CASSINI OVAL BILLIARD

Our billiard consists of a free-moving point particle insid
a two-dimensional box that bounces off the boundary ela
cally. The boundary of our billiard system is given by
fourth-order curve, the Cassini oval:

r1•r25a2,

wherer 1 and r 2 are distances from two foci located atx5
6c andy50. In Cartesian coordinates it can be cast into
form

~x21y2!222c2~x22y2!5a42c4. ~2.1!

We have two characteristic lengths. However, the shap
the boundary is defined by the ratiod5a/c ~from now on,
the shape parameter!, which determines the following
boundary types:A2,d, the boundary is an oval; 1,d
,A2, the boundary is an oval with a neck; andd,1, the
boundary becomes unlinked~two ovals separate!.

In the present work we investigated.1 values. Decreas
ing the shape parameter, the classical behavior goes from
regular motion~whend→`, the boundary is a circle! to the
chaotic one~whend→1). Using the reflection symmetries o
the boundary, we consider the motion in the regionx.0,y
.0 ~desymmetrized billiard!. That is, we study the quarte
billiard defined by the boundary@Eq. 2.1!# for x>0,y>0 and
the coordinate axesx andy. We study the Cassini oval bil

FIG. 1. Desymmetrized Cassini oval~upper-right quarter of the
curve with segments of the coordinate axesx and y). ~a! d5A2
with Birkhoff coordinatesp andq. ~b! d52.
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liard for two values ofd. One of them isd5A2 @the value of
the parameter for which the neck begins to appear; see
1~a!#, whose form mimics the Bunimovich stadium billiar
@22#. Figure 2~a! shows the Poincare´ surface at the boundar
using Birkhoff coordinates. The coordinateq is related to the
arclength coordinate at the boundary where the bounce t
place byq5 ~arclength!/~perimeter!; p5p• t̂/upu is the frac-
tion of tangential momentum at this point (t̂ being the tan-
gent unit vector to the boundary!. Exploiting the time-
reversal symmetry, we show only thep>0, 0<q<1/4
region. The classical phase space has a bouncing-ball reg
region dominated by invariant curves and a chaotic reg
with unstable short periodic orbits equivalent to those
pearing in the Bunimovich stadium billiard. A resonance
winding number 6 defines the last great regular region be
chaos begins to appear@an eigenfunction existing on th
chain of islands defined by the resonance is shown in F
3~a!#. We have found two very small stable regions cor
spondingto a stable bifurcation of the unstable bow tie p
odic orbit ~two small dark dots can be observed in the ch
otic region!. @Figure 3~b! shows an eigenfunction existing i
that region of the phase space.# We have not detected an
other regular region embedded in the chaotic sea.

FIG. 2. Poincare´ surface of section expressed in Birkhoff coo
dinates (p andq) for p>0 and 0<q<0.25. ~a! d5A2. ~b! d52.
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FIG. 3. Wave functions of Cassini oval billiard ford5A2 with wave numbersk displayed below each one of them. We can see~a! the
regular eigenfunction,~b! the eigenfunction strongly localized on a scar reminiscent of an unstable periodic orbit~bow tie!, ~c! the irregular
wave function, and~d! the bouncing-ball wave function extremely close in energy to the previous one but without exhibiting mixtur
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The other shape we have studied (d52) is closer to an
ellipse @see Fig. 1~b!#. In this case the bouncing-ball regio
of the phase space is greater than before as it can be se
Fig. 2~b!. Moreover, a regular region appears as a thin b
for p*0.9 values, dominated by whispering gallery trajec
ries. Phase space is very mixed and many stable island
very different sizes are interspersed with the chaotic tra
tories.

By selecting two regions corresponding to chaotic mot
in the phase space, we have calculated diffusion times
tween them. The results ford5A2 are independent of th
chosen regions. In the other case (d52) this time is strongly
dependent on them and we have obtained diffusion times
order of magnitude greater than those ofd5A2. This fact is
related to partial barriers such as those shown in Fig. 4~a!.

We have determinedrcl, the fraction of the phase spac
that corresponds to regular motion for both the values of
parameter. We have found thatrcl50.172 whend5A2,
while rcl50.394 ford52.

III. THE QUANTUM BILLIARD

To study the quantum billiard we solve the tim
independent Schro¨dinger equation for one particle inside
two-dimensional boxD with Dirichlet boundary conditions
at the impenetrable walls]D:

¹2f~r !52k2f~r ! in D,

f50 on ]D,

where

k5
A2mE

\

andD corresponds to the surface of the desymmetrized
liard, that is, the surface bounded by the Cassini oval~2.1!
n in
d
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and thex.0 andy.0 semiaxes. So the Dirichlet bounda
condition implies that only odd-odd solutions of the full bi
liard will be found. We have employed a different techniqu
the scaling method@23#: This is a very efficient one-
dimensional method developed to compute eigenvalues
eigenfunctions of quite general planar billiards~for three-
dimensional billiards this is practically the only availab
method to obtain high excited states@24#!. The great advan-
tage of the method is that all eigenvalues and eigenfunct
in a narrow k interval are computed simultaneously wi
comparable accuracy, thus avoiding time consum
searches and the possibility of missing some state.

FIG. 4. Effects of barriers.~a! Poincare´ section ford52 taking
only one initial condition very close to the whispering gallery r
gion (p*0.9). We can observe two partial barriers limiting flux an
defining two small chaotic regions~which are filled more densely
than the major chaotic part of phase space!. ~b! Husimi distribution
of an eigenfunction localized over one of these small regions.~c!
Same eigenfunction in configuration space.
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We have calculated the energy levels from the fundam
tal state up to the 25 000th level ford5A2 and up to the
10 000th ford52. Moreover, we took a sequence of 50
levels between the 62 210th and 67 210th for both value
d. We obtained the eigenvalues with an average precisio
1026 of the mean level spacing for chaotic eigenfunctio
Regular states are only limited by the computer~double!
precision.

We have studied the eigenfunctions of the billiard in d
ferent regions of the spectrum. In general, it is possible
identify each eigenfunction with a classical region. Th
identification of the eigenfunctions is more clearly seen
the stellar representation@25#. In it, the Husimi distribution
of the normal derivative on the boundary represents
eigenfunctions in the Poincare´ section in Birkhoff coordi-
nates. The stellar representation of an eigenfunction is c
pared directly with the classical Poincare´ section. As an ex-
ample we show some eigenfunctions ford5A2 ~we have
taken the area of the desymmetrized billiard equal top/4).
Figure 3 ~a! shows a linear density plot of the square of
state existing on the chain of islands defined by a resona
of winding number 6 and Fig. 5~a! shows the same state i
stellar representation. Figures 3~b! and 5~b! show a scar@26#
of the bow tie unstable periodic orbit. Figures 3~c! and 5~c!
show a delocalized state distributed over all the classic
chaotic region~chaotic state!. Finally, Figs. 3~d! and 5~d!
show a bouncing-ball state.

We stress that the states appearing in Figs. 3~c! and 3~d!
are quasi-degenerate. The distance between them is a
small fraction (s50.000 18) of the mean level spacing. It
clear from Figs. 5~c! and 5~d! that these states practically d

FIG. 5. Husimi plots corresponding to the wave functions d
played in Figure 3. This shows~a! great localization on a classica
resonance,~b! remarkable localization on the classical region whe
an unstable orbit is found to exist,~c! almost uniform extension
over chaotic region and~d! strong localization on one torus belong
ing to the interior of the principal regular island situated at t
origin.
n-

of
of
.

o

e

-

ce

ly

ery

not interact because they exist in different regions of ph
space. On the other hand, this example shows us that
necessary to evaluate the eigenvalues with high accurac
order to calculate the spectral fluctuations of the system~see
the next section!.

For d52, the qualitative description of the eigenfunctio
is equivalent to the previous one. However, there is a sign
cant fraction of localized eigenfunctions existing in the ch
otic region. One of them is shown in Figs. 4~b! and 4~c!.

IV. THE ENERGY-LEVEL STATISTIC

In this section we analyze the level spacing distribution
the numerical data described previously. The counting fu
tion N(k) gives us the number of levels with wave numb
below k. Weyl’s formula with border, angle and curvatu
corrections@8# provides a good estimate for the smooth p
^N(k)& of the counting function.

In order to verify that no levels had been lost we ha
compared̂ N(k)& with a smoothed version ofN(k). Defining
a new sequence byKn[^N(kn)& ~wherekn belongs to the
original sequence of wave numbers!, we take into account
the ‘‘unfolding’’ procedure by which a unit mean spacing
given to the series of levels@19#.

Following Ref.@17# in the analysis of the data, we use th
cumulative level spacing distributionW(s)5*0

sp(y)dy
rather thanp(s) because it is numerically easier to evalua
We fit numerical curves with the analytical expression
the Brody family of cumulative spacing distributions

Wb
B~s!512exp~2bsb11!,

with b5@G„(b12)/(b11)…#b11, and the theoretical Berry
Robnik distribution

Wr
BR~s!512exp~2rs!$rQGOE~s!

2~12r!@WGOE~s!21#%

with QGOE(s)[(12r)*s
`dl*l

`pGOE(y)dy, pGOE(y) being
the exact GOE spacing distribution, andWGOE51
1dQGOE /d@(12r)s#. QGOE andWGOE are tabulated asC
and F ~taking as mean density 12r), respectively, in Ref.
@5#, for instance. This exact GOE evaluation allows us
distinguish deviations of numerical data from theory witho
including the difference between Wigner and exact GOE f
mulas@which are of approximately the same order; this c
be verified in Fig. 6~a!, which shows the difference betwee
the BRD using Wigner surmise and the exact GOE resu#.

Deviations of numerical data from best-fitting curves c
be better seen with a transformation defined by

U~W!5~1/p!cos21A~12W!, ~4.1!

which has constant statistical error over alls. Furthermore, if
we plot U(W) versusWb

B we will have an equally space
distribution of points on the abscissa~see Fig. 6, for ex-
ample!.

We have evaluatedx25( i 51
N @W(si)num2W(si) theor#

2

weighted with@dW(si)#25W(si)@12W(si)#/N, so that we
could find the optimal values ofb and rBR (rBR is the re-
sulting best fitting value for the fractionr of regular levels

-
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57 5401NUMERICAL VERIFICATION OF PERCIVAL’S . . .
employed as a free parameter in order to find the lowestx2).
Results from fittings can be seen in Table I.

It is clear that, ford5A2, the BRD curve fits data muc
better than the BD curve. Taking the sequence of 25 000
levels, we found thatx2 for the BRD was approximately five
times lower than for the BD. Even for the small-s range we
could verify better agreement between data and the B
formula than for the BD one, although deviations due
tunneling can be clearly seen in Fig. 6~a!. For large values of
s, differences between data and the BRD could evide
discrepancies with respect to the GOE behavior. Taking
sequence of 5000 levels between 62 210 and 67 210 we

FIG. 6. Differences between numericalU and UBR taking the
best-fitting valuerBR are displayed by a solid~fluctuating! line for
d5A2. Dotted lines that follow the solid one represent thedU
uncertainty band.~a! N between 1 and 25 000 and~b! N between
62 210 and 67 210. In~a! the difference betweenUBR calculated
with the Wigner surmise and with exact GOE results is also plo
by a dashed line. We can see that deviations of numerical data
this curve are of the same order.

TABLE I. Results of fittings. Comparison between the regu
fraction of levelsrBR and the integrable part of classical pha
spacercl.

d N bB x2/N rBR x2/N rcl

A2 1–25000 0.570 19.61 0.177 4.34 0.17

A2 62210–67210 0.599 4.50 0.165 0.20 0.17

2 1–10000 0.230 5.63 0.433 4.79 0.39

2 62210–67210 0.226 2.27 0.437 0.98 0.39
st

D

e
e
b-

tained ax2 for the BRD that was 25 times lower than for th
BD. This can be checked with Fig. 6~b!, where the region of
small s still shows some deviations from the best-fittin
BRD, but the range where this happens has become
narrow. In fact, for all values ofs, the agreement is excellen
and we can say that the BRD is working perfectly well
these not-so-high-energy levels.

In the case ofd52, for the first 10 000 levels, the sam
orderx2 was found for the two distributions, although it wa
better for the BRD than for the BD. In Fig. 7~a! we can
appreciate that the BD fits numerical data in an accepta
way for small -svalues. This is due to tunneling effects th
persist in a widers range than for thed5A2 case. A more
complicated structure of classical phase space makes tun
ing processes more significant. However, for greaters the
BD no longer follows numerical data, so there is no glob
agreement with it. As in the previous case, we take 50
levels between 62 210 and 67 210. For these energies,x2 for
the BD is twice the value for the BRD. In Fig. 7~b! we can
see that discrepancies in the small-s region have reduced
and, though not as clear as ind5A2 case, numerical data ar
well adjusted by the BRD globally.

Finally, we investigated the behavior of data while goi
from low to high energies. In order to do so we took the fi
3000 levels for both of the shapes and then three stripe
levels, the first, second, and third 8000 levels ford5A2 and
the first, second, and third 4000 levels ford52. Results of
fittings can be seen in Table II. It is clear from Figs. 8 and
that there is no transition from the Brody to the Berr
Robnik regime either ford5A2 or for d52.

V. SUMMARY AND CONCLUSIONS

To verify Percival’s conjecture, we have studied the qua
tum version of a billiard, depending on one shape param

d
m

r

FIG. 7. Same as in Fig. 6, but ford52. ~a! N between 1 and
10 000 and~b! N between 62 210 and 67 210~we use the same line
patterns as in Fig. 4!.
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5402 57CARLO, VERGINI, AND FENDRIK
d. This system shows mixed classical dynamics, going fr
integrability (d→`) to chaos (d→1) as the parameter i
varied.

On the one hand, the Husimi distribution of the eige
functions that we have obtained clearly display the class
structure of the phase space. Though mixing among reg
wavefunctions and irregular ones are expected~based on the
absence of degeneracies in this one-parameter system
has been desymmetrized!, they seem to happen only whe
the energy difference is surprisingly small@even for levels as
low asN.2500, such as the ones exemplified in Figs. 3~c!
and 3~d!#. So we can say that Percival’s conjecture is effe
tively working. Mixed functions are exceptions mainly orig
nated in the states whose Husimi distributions localize on
last Kolmogorov-Arnold-Moser tori.

TABLE II. Results of fittings. Three stripes of increasing ener
are displayed for the two values of the shape parameter.

d N bB x2/N rBR x2/N

A2 1–8000 0.59 10.42 0.17 3.15

A2 8001–16000 0.57 5.79 0.17 1.33

A2 16001–24000 0.54 4.65 0.19 1.32

2 1–4000 0.24 3.00 0.42 2.88

2 3000–7000 0.22 2.68 0.44 1.02

2 6000–10000 0.22 1.61 0.45 1.97
-
al
lar

hat

-

e

On the other hand, the level-spacing statistics was fit
by two distributions depending on one parameter: the se
classical Berry-Robnik distribution, which is founded o
Percival’s conjecture, and the Brody distribution. We ha
found in all cases we have analyzed that the BRD is the b
one. Moreover, as expected, fits of the BRD are better
increasing values of the wave numberk; however, discrep-
ancies due to tunneling effects are found for small values
s, even for the best-fitting case@see Fig. 6~b!, this subject is
currently under study#. For d5A2, the parametersr of the
BRD corresponding to best fits do not show significant d
ferences from the fraction of the regular region of the cl
sical phase space. In the case ofd52, the bestr ’s are sys-
tematically greater than the classical value.

Our calculation of diffusion times shows that the Cass
billiard with d5A2 has only one chaotic region. There a
not partial barriers dividing chaotic regions of comparab
sizes. So we expect that the chaotic component of the st
tic is given by a single GOE distribution. In the cased52
we have determined partial barriers between a main cha
region and a little one near the whispering gallery regio
The size of the latter is so small that it enlarges~for low
energies! the regular region of phase space rather than c
tributing as an independent GOE. This can be seen in F
4~b! and 4~c!, where we show an eigenfunction localized
this small classical chaotic region but having regular char
teristics. Moreover, there are small regular islands immer
in the chaotic sea that are more relevant ford52 ~see Fig. 2!
than ford5A2. They produce quantum localization in the
chaotic neighborhood@for instance, see the Poincare´ surface
section Fig. 2~a! and the Husimi distribution in Fig. 5~b!# and
consequently the resultingr of the fits overestimates th
fraction corresponding to regular motion in the classi
FIG. 8. Same as in Fig. 6, but ford5A2. The levels used for plotting are~a! 1–3000,~b! 1–8000,~c! 8001–16 000, and~d! 16 001–
24 000.



57 5403NUMERICAL VERIFICATION OF PERCIVAL’S . . .
FIG. 9. Same as in Fig. 7, but ford52. The levels used in this case are~a! 1–3000,~b! 1–4000,~c! 3000–7000, and~d! 6000–10 000.
gn
n
a

g-
p-
phase space. We stress that, in all cases, the BD has si
cant differences from the numerically calculated distributio
So we do not observe the BD to BRD transition that w
seen in other systems.
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